Abstract

There are numerous inorganic materials that may qualify as good photovoltaic (PV) absorbers, except that the currently available selection principle-focusing on materials with a direct band gap of ∼1.3 eV (the Shockley-Queisser criteria)-does not provide compelling design principles even for the initial material screening. Here we offer a calculable selection metric of "spectroscopic limited maximum efficiency (SLME)" that can be used for initial screening based on intrinsic properties alone. It takes into account the band gap, the shape of absorption spectra, and the material-dependent nonradiative recombination losses. This is illustrated here via high-throughput first-principles quasiparticle calculations of SLME for ∼260 generalized I(p)III(q)VI(r) chalcopyrite materials. It identifies over 20 high-SLME materials, including the best known as well as previously unrecognized PV absorbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call