Abstract

ABSTRACTThe market saturation issue of urban shopping malls has attracted considerable attention in China in recent years. In order to rapidly identify potential over-supply zones and inform policy-makers, this study developed a new model by integrating a weighted Voronoi diagram and crowdsourced data. The model was then tested in the city of Hangzhou, China. First, crowdsourced data such as user reviews of shopping were collected to measure the weights of malls. Second, by using population and floor space as parameters, an over-supply index was established for over-supply zone delimitation. This study offers a fast and low-cost approach for measuring consumption activities at a fine scale, and shows the merits of integrating classical analysis models and big data. Moreover, long-term user reviews and recommendation datasets with timestamps could be used to monitor the status of market health. From a bottom-up perspective, the market boundary map and over-supply index could constitute an important database for policy formulation through crowdsourced data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.