Abstract
Debonding between asphalt layers is usually modeled as a global or “smeared” phenomenon across the entire lane. However, field evidence indicates debonding may be limited to a portion of the interface. The objective of this study was to determine the potential location and extent of localized interface debonding in asphalt pavements so that more realistic interface conditions and pavement responses can be employed in future performance predictions. A parametric study was conducted to locate stress states potentially conducive to interface debonding. Factors considered included asphalt concrete (AC) layer thickness, AC-to-base stiffness ratio, interface compliance, tire size, and traffic wander. The parametric study showed existence of a zone of high shear stress coupled with low confinement for a broad range of depths (1–3 in. below the surface) and extending to 2 in. from the tire edge. Given the drop in confinement immediately outside the tire edge and that shear stress magnitude in this zone was similar to shear strength values reported in the literature, it was concluded that the repetition of these critical stress state conditions can cause localized debonding of an interface located about 2 in. below the pavement surface. Existence of a potential zone of localized interface debonding around the edge of a tire can promote a debonded strip below the wheelpath, which is consistent with field observations. The width of the debonded strip can extend to 42 in. Future research efforts should examine the stress redistribution associated with the presence of a debonded strip below the wheelpath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.