Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignancy of the genitourinary system and is associated with high mortality rates. However, the molecular mechanism of ccRCC pathogenesis is still unclear, which translates to few effective diagnostic and prognostic biomarkers. In this study, we conducted a bioinformatics analysis on three Gene Expression Omnibus datasets and identified 437 differentially expressed genes (DEGs) related to ccRCC development and prognosis, of which 311 and 126 genes are respectively down-regulated and up-regulated. The protein-protein interaction network of these DEGs consists of 395 nodes and 1872 interactions and 2 prominent modules. The Staphylococcus aureus infection and complement and coagulation cascades are significantly enriched in module 1 and are likely involved in ccRCC progression. Forty-two hub genes were screened, of which von Willebrand factor, TIMP metallopeptidase inhibitor 1, plasminogen, formimidoyltransferase cyclodeaminase, solute carrier family 34 member 1, hydroxyacid oxidase 2, alanine-glyoxylate aminotransferase 2, phosphoenolpyruvate carboxykinase 1, and 3-hydroxy-3-methylglutaryl-CoA synthase 2 are possibly related to the prognosis of ccRCC. The differential expression of all nine genes was confirmed by quantitative real-time polymerase chain reaction analysis of the ccRCC and normal renal tissues. These key genes are potential biomarkers for the diagnosis and prognosis of ccRCC and warrant further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.