Abstract

Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.