Abstract

Glyphosate is a widely used herbicide known for its effectiveness in weed control; and it is an inhibitor of the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Currently, it is one of the most extensively used non-specific herbicides in agroindustry. However, toxic effects of glyphosate have recently been reported, including endocrine disruption, metabolic alterations, teratogenic, tumorigenic, and hepatorenal effects. Additionally, there are environmental concerns related to possible interactions with proteins from microorganisms, aquatic organisms, and mammals.Research on the description of these interactions has gained interest, primarily with the aim of generating recommendations in terms of its use and possible regulations. On the other hand, computational methods have emerged to identify potential targets or unintended targets among numerous possible receptors. Several programs, online services, and databases are available for use in these methods.In this study, we employed a set of online tools for computational target fishing to identify receptors of glyphosate. A set of thirteen targets were selected using six fishing tools. Furthermore, docking procedures were performed to investigate the expected interactions and binding energies. Certain associations with diseases are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.