Abstract

SARS-CoV-2 has triggered a major epidemic among people around the world, and it is the newest in the sequence to become prevalent among other infectious diseases. The drug repurposing concept has been utilized effectively for numerous viral infections. Considering the situation and the urgency, the idea of drug repurposing for coronavirus infection (COVID-19) is also being studied. The molecular docking method was used for the screening of 29 antiviral drugs against primary protease proteins (MPP) of SARS-CoV-2, spike ecto-domain, spike receptor binding domain, Nsp9 RNA binding protein, and HR2 domain. Among these drugs, in terms of least binding energy, Indinavir, Sorivudine, Cidofovir, and Darunavir showed minimum docking scores with all the key proteins. For ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis, the ADMET properties of the top 4 drug candidates were retrieved through literature study. This analysis revealed that these drug candidates are well metabolized, distributed, and bioavailable, but have some undesirable effects. Furthermore, some approved structural analogues, such as Telbivudine, Tenofovir, Amprenavir, Fosamprenavir, etc., were predicted as similar drugs which may also be used for treating viral infections. We highly recommend these drug candidates as potential fighters against the deadly SARS-CoV-2 virus, and suggest in vivo trials for experimental validation of our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.