Abstract

Leishmaniasis is caused by ∼20 species of Leishmania that affects millions in endemic areas. Available therapies are not sufficient to effectively control the disease, cause severe side effects and eventually lead to drug resistance, making the discovery of novel therapeutic molecules an immediate need. Molecular target-based drug discovery, where the target is a defined molecular gene, protein or a mechanism, is a rationale driven approach for novel therapeutics. Humans obtain the essential amino acid such as threonine from dietary sources, while Leishmania synthesize it de-novo. Enzymes of the threonine biosynthesis pathway, including the rate limiting Homoserine kinase (HSK) which converts L-homoserine into ortho-phospho homoserine are thus attractive targets for rationale driven therapy. The absence of HSK in humans and its presence in Leishmania donovani enhances the opportunity to exploit HSK as a molecular target for anti-leishmanials therapeutic development. In this study, we utilize structure-based high throughput drug discovery (SBDD), followed by biochemical validation and identified two potential inhibitors (RH00038 and S02587) from Maybridge chemical library that targets L. donovani HSK. These two inhibitors effectively induced the mortality of Leishmania donovani in both amastigote and promastigote stages, with one of them being specific to parasite and twice as effective as the standard therapeutic molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call