Abstract

Interleukin-13 (IL-13) is a cytokine implicated in airway diseases such as asthma and idiopathic pulmonary fibrosis. IL-13 signals through a heterodimeric receptor complex consisting of IL-13Rα1 and IL-4Rα, known as the type II IL-4R. IL-4 also signals through this receptor and as such many of the biological effects of IL-13 and IL-4 are similar. Here we describe the development of two sensitive bioassays to determine the potency of antagonists of the mouse type II IL-4R. Both IL-13 and IL-4 dose-dependently induce CCL17 production from J774 mouse monocytic cells and CCL11 production from NIH3T3 mouse fibroblasts in the presence of TNFα. The assays were optimized to minimize TNFα concentration, cell number and incubation time whilst retaining a suitable signal-to-background ratio. Anti-cytokine antibodies or recombinant soluble receptors completely neutralized IL-13 or IL-4 activity in these bioassays. The J774 assay was used to screen a panel of anti-mIL-13Rα1 antibodies for neutralizing activity against this receptor. We report the identification of the first monoclonal antibodies that bind mouse IL-13Rα1 and neutralize both IL-13-induced and IL-4-induced cellular function. These antibodies should prove useful for determining the effects of neutralizing IL-13Rα1 in mouse models of disease. In addition, these bioassays may be used for measuring the bioactivity of mouse IL-13 and IL-4 and for the discovery of additional antagonists of the mouse IL-13Rα1/IL-4Rα complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.