Abstract

Flowering is an important stage in plant development and crucial for adaptation of plant species to different environments. Two soybean mapping populations were used to identify quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) by genotyping simple sequence repeat (SSR) markers. Single-factor analysis of variance detected association of phenotypic data with SSR markers in each population. DF QTLs were identified on four chromosomes (chrs.); two QTLs located on chrs. 2 and 13 with Satt041 and Satt206 in the Jinpumkong 2 × SS2-2 population and other two DF QTLs were detected on chrs. 6 and 19 with Satt100 and Satt373 in the Iksannamulkong × SS2-2 population. The major QTLs associated with Satt100 explained 30.3% of maximum phenotypic variation. Especially, all DF QTLs included QTLs for DM, except Satt206 on chr. 13. Moreover, two additional DM QTLs were mapped on chrs. 10 and 11 with Satt243 and Satt359, respectively. DF QTL on chr. 2 with Satt041 was the newly identified QTL only in the Jinpumkong 2 × SS2-2 population and explained 10.3% of the phenotypic variation. The single locus of Satt100 on chr. 6 and Satt373 on chr. 19 were located on soybean genomic regions of the known flowering gene loci E1 and E3, respectively. These population-specific QTLs (Satt100 and Satt373) are the major QTLs for flowering time, putatively, they may be related to maturity QTLs with large effect. Additionally, these QTLs are valuable for marker-assisted approaches and could be widely adopted by soybean breeders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call