Abstract

Highly pathogenic avian influenza virus H5N1 infects a wide range of host species, with a few cases of sporadic pigeon infections reported in the Middle East and Asia. However, the role of pigeons in the ecology and evolution of H5N1 viruses remains unclear. We previously reported two H5N1 virus strains, isolated from naturally infected pigeons in Egypt, that have several unique mutations in their viral polymerase genes. Here, we investigated the effect of these mutations on H5N1 polymerase activity and viral growth and identified three mutations that affected viral polymerase activity. The results showed that the PB1-V3D mutation significantly decreased polymerase activity and viral growth in both mammalian and avian cells. In contrast, the PB2-K627E and PA-K158R mutations had moderate effects: PB2-K627E decreased and PA-K158R increased polymerase activity. Structural homology modelling indicated that the PB1-V3D residue was located in the PB1 core region that interacts with PA, predicting that the PB1 mutation would produce a stronger interaction between PB1 and PA that results in decreased replication of pigeon-derived H5N1 viruses. Our results identified several unique mutations responsible for changes in polymerase activity in H5N1 virus strains isolated from infected pigeons, emphasizing the importance of avian influenza surveillance in pigeons and in studying the possible role of pigeon-derived H5N1 viruses in avian influenza virus evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.