Abstract

Chloroplasts synthesize an abundance of different tetrapyrrole compounds. Among them are chlorophyll and its precursor protochlorophyllide (Pchlide), which accumulate in light- and dark-grown plants, respectively. Pchlide is converted to chlorophyllide by virtue of the NADPH:Pchlide oxidoreductase (POR), which, in angiosperms, is the only known light-dependent enzyme of the chlorophyll biosynthetic pathway. In etiolated barley plants, two closely related POR proteins exist termed PORA and PORB, which are nuclear gene products. Here we identified plastid envelope proteins that interact with the cytosolic PORA precursor (pPORA) during its posttranslational chloroplast import. We demonstrate that pPORA interacts with several previously unreported components. Among them is a Pchlide a oxygenase, which provides Pchlide b as import substrate for pPORA, and a tyrosine aminotransferase thought to be involved in the synthesis of photoprotective vitamin E. Two other constituents were found to be orthologs of the GTP-binding proteins Toc33/34 and of the outer plastid envelope protein Oep16.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.