Abstract

A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.