Abstract
This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the Newmark-beta method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.