Abstract

Photoexcitation of chloranil (CA) produces initially the excited singlet state 1CA*, as demonstrated for the first time by time-resolved spectroscopy on the femtosecond/picosecond time scale. Electron transfer from aromatic donors (D) to singlet chloranil leads to short-lived (ca. 5 ps) singlet radical-ion pairs, 1[D•+, CA•-]. This ultrafast quenching process competes with intersystem crossing (kISC ≈ 1011 s-1) to generate the triplet excited state, 3CA*. The follow-up electron transfer from D to 3CA* yields triplet radical-ion pairs, which are distinguished from their singlet analogues by their long (nanosecond) lifetimes. The competition between electron transfer and intersystem crossing on the early picosecond time scale also pertains to a wide variety of other photoexcited quinones related to chloranil. Electron transfer to singlet quinone as established here adds a new dimension to the generally accepted mechanisms which proceed from the triplet state, and the inclusion of reactions on both the tripl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.