Abstract

In the current study, we have constructed receptor-based pharmacophore models by exploiting the Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) structural proteome. The derived models were subjected to a series of validation procedures to list the representative hypotheses that can be used for the screening of the Drug-like Diverse Database. A set of 739 molecules was retrieved and analyzed for the adsorption, distribution, metabolism, excretion and toxicity (ADMET) and drug-likeness attributes. The filtered drug-like molecules (64) were then subjected to molecular docking and HYDE assessment studies. The hybrid structure-based approach yielded 4 molecules, UKR1308259, ENA1096786, UKR403454, and ASI51224, as PfENR inhibitors. The stability of these inhibitors was assessed using molecular mechanics-generalized born surface area approach-based free binding energy calculations and molecular dynamics simulations. Molecular mechanics-generalized born surface area calculations and molecular dynamics simulations showed that UKR1308259, ENA1096786, and ASI51224 were more potent PfENR inhibitors. The rationale behind the current work was to identify orally available inhibitor molecules with diverse scaffolds that could serve as initial leads for the drug design against PfENR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call