Abstract

Fourteen pesticides were screened and determined through quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction process combined with GC-MS/MS in arid agriculture soil. The aims of the current investigation were to account the occurrence of organochlorine (OCP) and organophosphates (OPP) pesticide residues as well as other groups of pyrethroids (PYRs), carbamates, and biopesticides using a combined of QuEChERS and GC-MS/MS techniques in agriculture soils at Al-Kharj region, Saudi Arabia, and to investigate correlation between pesticide losses in soils and some physicochemical characteristics of pesticides including an octanol-water coefficient partition (Kow) and the vapor pressure (Vp). Prediction of pesticide fate by considering both pesticide and soil physio-chemical properties will facilitate the management of pesticide application and minimize the hazards of environmental pollution. The fate of pesticide residue in soils is generally controlled by soil/air exchange, water interaction, and biodegradation. The results indicated that 14 pesticide residues were measured in collected samples of various soils, spinosad, chlorpyrifos methyl, dimethoate, chlorpyrifos, lindane (γ-HCH), permethrin, and methomyl which were the most abundant sources of contamination in the studied region. p,p-DDT, o,p-DDT, bifenthion, β-cyfluthrin, and methidathion were less commonly detected. Single parameter least squares regression equations (sp-LSRE) for Vp and Kow against the loss of each pesticide residue showed a significant change in concentration levels (p < 0.05) between the two seasons. The results showed that vapor pressure and octanol-water partition coefficient data are not enough to model pesticide residue losses in arid low organic carbon soil. More soil-related data is needed to describe the dissipation mechanisms of these pesticide residues in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.