Abstract

BackgroundClostridioides difficile infection (CDI) is an important cause of diarrheal disease associated with increasing morbidity and mortality. Efforts to develop a preventive vaccine are ongoing. The goal of this study was to develop an algorithm to identify patients at high risk of CDI for enrollment in a vaccine efficacy trial. MethodsWe conducted a 2-stage retrospective study of patients aged ≥ 50 within the US Department of Veterans Affairs Health system between January 1, 2009 and December 31, 2013. Included patients had at least 1 visit in each of the 2 years prior to the study, with no CDI in the past year. We used multivariable logistic regression with elastic net regularization to identify predictors of CDI in months 2–12 (i.e., days 31 – 365) to allow time for antibodies to develop. Performance was measured using the positive predictive value (PPV) and the area under the curve (AUC). ResultsElements of the predictive algorithm included age, baseline comorbidity score, acute renal failure, recent infections or high-risk antibiotic use, hemodialysis in the last month, race, and measures of recent healthcare utilization. The final algorithm resulted in an AUC of 0.69 and a PPV of 3.4%. ConclusionsWe developed a predictive algorithm to identify a patient population with increased risk of CDI over the next 2–12 months. Our algorithm can be used prospectively with clinical and administrative data to facilitate the feasibility of conducting efficacy studies in a timely manner in an appropriate population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.