Abstract
The identification of non-linear stochastic spatio-temporal dynamical systems given by stochastic partial differential equations is of great significance to engineering practice, since it can always provide useful insight into the mechanism and physical characteristics of the underlying dynamics. In this study, based on the difference method for stochastic partial differential equations, a novel state-space model named multi-input–multi-output extended partially linear model for stochastic spatio-temporal dynamical system is proposed. A new Reproducing Kernel Hilbert Space-based algorithm named extended partially linear least square ridge regression is thus particularly developed for the identification of the extended partially linear model. Compared with existing identification methods available for spatio-temporal dynamics, the advantages of the proposed identification method include that (i) it can make full use of the partially linear structural information of physical models, (ii) it can achieve more accurate estimation results for system non-linear dynamics and (iii) the resulting estimated model parameters have clear physical meaning or properties closely related to the underlying dynamical system. Moreover, the proposed extended partially linear model also provide a convenient state-space model for system analysis and design (e.g. controller or filter design) of the class of non-linear stochastic partial differential dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.