Abstract

Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 yr ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine-rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model Saccharomyces cerevisiae. We suggest that these proteins are parthenogenesis-inducing factors and our results indicate that this would be made possible by a novel mechanism of bacterial-host interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call