Abstract

Poly(A)-specific ribonuclease (PARN) is a 3′-exoribonuclease that removes poly(A) tails from the 3′ end of RNAs. PARN is known to deadenylate some ncRNAs, including hTR, Y RNAs, and some miRNAs and thereby enhance their stability by limiting the access of 3′ to 5′ exonucleases recruited by oligo(A) tails. Several PARN-regulated miRNAs target p53 mRNA, and PARN knockdown leads to an increase of p53 protein levels in human cells. Thus, PARN inhibitors might be used to induce p53 levels in some human tumors and act as a therapeutic strategy to treat cancers caused by repressed p53 protein. Herein, we used computational-based molecular docking and high-throughput screening (HTS) to identify small molecule inhibitors of PARN. Validation with in vitro and cell-based assays, identified 4 compounds, including 3 novel compounds and pyrimidopyrimidin-2-one GNF-7, previously shown to be a Bcr-Abl inhibitor, as PARN inhibitors. These inhibitors can be used as tool compounds and as lead compounds for the development of improved PARN inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.