Abstract

In view of the problem of the paralytic shellfish poison producing algae on-line measurement and identification, a new feature extraction method of paralytic shellfish poison producing algae measurement and identification based on quaternion principal component analysis (QPCA) is investigated. The three-dimensional (3D) fluorescence spectra of three common species of paralytic shellfish poison producing algae and eight species common of non paralytic shellfish poison producing algae are analyzed. The quaternion parallel representation model of algae three-dimensional fluorescence spectrum data is established, then the features of quaternion principal component is extracted to use as the input of k-nearest neighbor (KNN) classifier, and the identification of paralytic shellfish poison producing algae is realized by the three-dimensional fluorescence spectra coupled with quaternion principal component analysis. The results show that under the quaternion parallel representation model, the recognition accuracy rate of multiplication feature, modulus feature and summation feature is 90%, 95% and 100% respectively. Compared with that of the principal component analysis feature extraction method, the recognition accuracy rate in pure samples by summation feature of quaternion principal component is improved by 10%. This study provides an experimental basis for the accurate monitoring technology of three-dimensional fluorescence spectrum of paralytic shellfish poison producing algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.