Abstract
The ca. 3.47 Ga Duffer Formation has been considered to carry one of the oldest paleomagnetic records. Yet, the lack of rock magnetic data limits the interpretation of the nature of the remanence. We conducted a rock magnetic and paleomagnetic investigation on columnar dacite of the Duffer Formation. The main magnetic minerals are phenocrysts of titanomagnetite and magnetite, and secondary hematite in groundmass. Detailed thermal demagnetization revealed more complex natural remanence than previously estimated, consisting of four components with typical unblocking temperature of 200–350, 200–500, 590, and 690 °C. Combined with alternating field demagnetization and rock magnetic data, they are attributed to titanomagnetite, coarse-grained magnetite, fine-grained magnetite, and hematite, respectively. The comparison of unblocking temperature and coercivity suggests that the previously proposed secondary component is carried by fine-grained magnetite as well as hematite, while the putative primary component is carried by coarse-grained magnetite and titanomagnetite. Microscopic observations showed that coarse-grained magnetite and titanomagnetite are primary crystals, although this does not necessarily indicate they preserve primary remanence. The remanence directions of all components revealed higher scatter than the previous studies, suggesting the need for caution in interpretation. The low unblocking temperature of titanomagnetite suggests that if their remanence is truly primary, the rocks must have kept below ~ 250 °C for ~3.47 billion years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.