Abstract

Extracellular ATP has vasodilatory and inotropic effects in the heart. We have demonstrated that extracellular ATP, in a concentration-dependent manner (10 nM-0.1 mM), increased [Ca2+]i in suspensions of isolated fura-2-loaded rat cardiac ventricular myocytes (maximum 96 +/- 10% increase over basal levels, SEM, n = 12, P less than 0.01). The increase in [Ca2+]i was often biphasic, with an initial fast phase (less than 1 s) of low amplitude, followed by a slower phase of higher amplitude. A second application of ATP had little effect, and ATP abolished the effect of subsequent electrical stimulations, even through the cells were still able to respond with an increase in [Ca2+]i to KCl-induced depolarization or stimulation by caffeine. Pretreatment of cells with nifedipine, verapamil, caffeine, ryanodine, or 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride attenuated the effect of extracellular ATP on [Ca2+]i, and binding of extracellular free calcium by excess EGTA completely abolished the effects of extracellular ATP and electrical stimulation. Extracellular ATP increased bisoxonol fluorescence in ventricular myocytes, indicating depolarization of the sarcolemma. Pretreatment of the myocytes with tetrodotoxin (50 microM), or replacement of NaCl in the incubation buffer with the impermeant cation N-methyl-D-glucamine, suppressed the extracellular ATP effect on [Ca2+]i. ADP and AMP had smaller effects on [Ca2+]i than ATP; adenosine had no effect. ATP analogues showed the following rank order of potency in increasing [Ca2+]i or bisoxonol fluorescence: ATP greater than or equal to 2-methylthioATP much greater than adenosine 5'-O-[3-thio]triphosphate greater than adenosine 5'-[alpha, beta-methylene]triphosphate approximately adenosine 5'-[beta, gamma-methylene]triphosphate approximately adenosine 5'-[beta, gamma-imino]triphosphate greater than adenosine. These data are consistent with the presence of purinoceptors (P2Y subtype) on the sarcolemma of cardiac ventricular myocytes of the rat, which upon activation lead to depolarization and activation of cation channels of the sarcolemma and flux of extracellular Ca2+ into the cells. This may result in further flux of Ca2+ into the cytosol from intracellular stores. The effects of extracellular ATP on [Ca2+]i in rat cardiac ventricular myocytes may, in part, explain the direct inotropic effects of extracellular ATP on the mammalian heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call