Abstract

Numerous underexplored plant species are believed to possess considerable potential in combating oxidative stress and its associated health impacts, emphasizing the need for a comprehensive methodological screening approach to assess their antioxidant capacity. This study investigated 375 plant extracts, utilizing both cell-free and cellular methods to evaluate their antioxidant properties. Target-based antioxidant capacity was evaluated by the total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assays. Cell-based assays employed the H2DCF-DA probe to measure reactive oxygen species (ROS) levels and the Griess assay to quantify nitric oxide (NO) levels in stressed Caco-2 and RAW264.7 cells, respectively. The highest TPC and FRAP values were found in extracts of Origanum vulgare and Fragaria × ananassa leaves. Several plant extracts significantly reduced stress-induced ROS or NO levels by at least 30%. Distinctive selectivity was noted in certain extracts, favoring the significant reduction of NO (e.g., Helianthus tuberosus extract), of ROS (e.g., Prunus domestica subsp. Syriaca extract), or of both (e.g., Fragaria × ananassa leaf extract). A strong correlation between TPC and FRAP values and moderate correlations between the results of the cell-free and cell-based assays were evident. These findings highlight the great antioxidant potential of underexplored plant extracts and the diversity of the underlying mechanisms, emphasizing the importance of a multifaceted approach for a comprehensive assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call