Abstract

The Tris(hydroxymethyl)aminomethane (TRIS) salt of a substituted 5,6,7,8-tetrahydro-1,8-naphthyridine compound (I) in a mannitol-based formulation was stressed at various conditions. Liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analyses of the stressed samples revealed that oxidation and dimerization were the primary degradation pathways for this compound. 1H- and 13C-nuclear magnetic resonance (NMR) spectroscopy were used to characterize the isolated dimers. The aromatized degradate, N-oxide, amide, and three dimeric products were all confirmed by either LC/MS using authentic standards or NMR spectroscopy. In general, the aromatized product was always the primary degradate produced under all stress conditions. When stressed at 80 °C, the TRIS counterion also underwent thermal degradation to yield formaldehyde in situ which reacted with the parent compound to form a unique methylene-bridged dimeric product and an N-formyl degradate. A minor condensation product between the compound I and the TRIS counterion was also detected in the 80 °C stressed samples. Under 40 °C/75% RH stress conditions, TRIS derived degradates were insignificant, while dimers formed by compound I became predominant. In addition, two hydroxylated products (7-OH and 5-OH) were also detected. Mechanisms for the formation of the oxidative and dimeric degradates were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call