Abstract
The presence of organic compounds on the particulate matter (PM) or aerosols can arise from the condensation of gaseous organic compounds on the existing aerosols, or from organic precursors to form secondary organic aerosols (SOA) through photochemistry. The objective of this study is to characterize organic constituents on aerosols relevant to their emission sources and the key compounds revealing the evolution of aerosols with the use of a novel analytical technique. A time-of-flight mass spectrometry (TOFMS) coupled with comprehensive two-dimensional gas chromatography (GC×GC) was developed using a flow type of modulator instead of a thermal type as a prelude to field applications without the need for cryogen. The methodology of GC×GC-TOFMS is discussed in this study in detail.Since the coarse PM (PM10-2.5) may exhibit with a relatively high OC content compared to PM2.5, the GC×GC results have been obtained by analyzing PM10 samples collected in parallel with OC/EC analysis of PM2.5 samples at the Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2862 m ASL) as the high-mountain background site in East Asia. We found that the organic analytes were in a majority in the range of 12–30 carbon numbers falling in the category of semi-volatile organic compounds (SVOCs) with 43 compounds of alcohol, aldehyde, ketone, and ester varieties if excluding alkanes. Intriguingly, trace amounts of plasticizers and phosphorus flame retardants such as phthalates (PAEs) and triphenyl phosphate (TPP) were also found, likely originating from regions involved in open burning of household solid waste in Southeast Asia or e-waste recycling in southern China and along the long-range transport route. Compounds such as these are unique to the specific sources, demonstrating the wide spread of these hazardous compounds in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.