Abstract

Organic anion transporter 2 (OAT2 or SLC22A7) plays an important role in the hepatic uptake and renal secretion of several endogenous compounds and drugs. The goal of this work is to understand the structure activity of OAT2 inhibition and assess clinical drug interaction risk. A single-point inhibition assay using OAT2-transfected HEK293 cells was employed to screen about 150 compounds; and concentration-dependent inhibition potency (IC50) was measured for the identified "inhibitors". Acids represented about 65% of all inhibitors, and the frequency of bases-plus-zwitterions approximately doubled for "non-inhibitors". Interestingly, 9 of 10 most potent inhibitors (low IC50) are acids (pKa ∼ 3-5). Additionally, inhibitors are significantly larger and lipophilic than non-inhibitors. In silico (binary) models were developed to identify inhibitors and non-inhibitors. Finally, in vivo risk assessed via static drug-drug interaction models identified several inhibitors with potential for renal and hepatic OAT2 inhibition at clinical doses. This is the first study assessing the global pattern of OAT2-ligand interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call