Abstract

In this research, an interval-fuzzy possibilistic programming (IFPP) method was developed by integrating interval parameter programming (IPP), fuzzy possibilistic programming (FPP), and a fuzzy expected value equation within a general optimization framework. The developed IFPP method can not only effectively address uncertainties presented in terms of crisp intervals and fuzzy-boundary intervals in both the objective function and constraints, but it can also improve the traditional fuzzy mathematical programming by choosing the credibility degree of constraints based on the decision maker’s preference and avoiding complicated intermediate models with high computational efficiency. The developed method was applied to identify optimal placements for best management practices (BMPs) to control nutrient pollution in the Baoxianghe River watershed in China, in which a GIS-aided export coefficient model (ECM) was employed to estimate the phosphorus loads from a nonpoint source (NPS). The optimization results showed that the hybrid approach could be used to generate a series of implementation levels for BMPs under multiple credibility levels, ensuring that the NPS phosphorus loads discharged into rivers reduce to an allowable level and considering a proper balance between expected system costs and risks of violating the constraints. Relaxing the sub-basin discharge permits suggests a global discharge permit for the entire watershed, which may allow managers to shift BMP implementation among sub-basins to meet the overall discharge permit at a lower cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.