Abstract

Transcription control through cis-regulatory elements (CREs) is one of important regulators of gene expression. This study aimed to identify the location of CREs in oil palm (Elaeis guineensis Jacq.) using the combination of DNA free energy and single nucleotide polymorphism (SNP) density approaches. Promoter region sequences were extracted oil palm genome spanning from 1500 nucleotides (nt) upstream to 1000 nt downstream of every annotated transcription start sites (TSS). Free energy profiles of each promoter region were calculated using PromPredict software. Raw reads from the deep sequencing of 59 oil palm origins were used to calculate SNP density of each promoter region. The result showed that the average free energy (AFE) on the upstream region of TSS is about 1.5 kcal/mol higher compared to the downstream region. Using DNA free energy method, 16,281 regions of CREs were predicted. Most of predicted CREs was located between 1 and 500 nt upstream of TSS. Anti-correlation pattern between free energy and SNP density was observed on the predicted regions of CREs. This anti-correlated pattern was also observed on an experimentally determined promoter of the oil palm metallothionein gene, EgMSP1. Considering the increasing use of promoter information on plant biotechnology, an easy and accurate promoter prediction using the combination of free energy and SNP density method could be recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.