Abstract

Inhibition of dihydrofolate reductase from Mycobacterium tuberculosis-dihydrofolate reductase (Mtb-DHFR) has emerged as a promising approach for the treatment of tuberculosis. To identify novel Mtb-DHFR inhibitors, structure-based virtual screening (SBVS) of the Molecular Diversity Preservation International (MolMall) database was performed using Glide against the Mtb-DHFR and h-DHFR enzymes. On the basis of SBVS, receptor fit, drug-like filters, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, 16 hits were selected and tested for their antitubercular activity against the H37 RV strain of M. tuberculosis. Five compounds showed promising activity with compounds 11436 and 15275 as the most potent hits with IC50 values of 0.65 and 12.51 μM, respectively, against the H37 RV strain of M. tuberculosis. The two compounds were further tested in the Mtb-DHFR and h-DHFR enzymatic assay for selectivity and were found to be three- to eight-fold selective towards Mtb-DHFR over h-DHFR with minimum inhibitory concentration values of 5.50, 73.89 µM and 42.00, 263.00 µM, respectively. In silico simulation studies also supported the stability of the protein-ligand complex formation. The present study demonstrates the successful utilization of in silico SBVS tools for the identification of novel and potential Mtb-DHFR inhibitors and compound 11436 ((2,4-dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone) as a potential lead for the development of novel Mtb-DHFR inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.