Abstract
BackgroundGastric cancer (GC) carries significant morbidity and mortality globally. An increasing number of studies have confirmed that circular RNA (circRNA) is tightly associated with the carcinogenesis and development of GC, especially acting as a competing endogenous RNA for miRNAs.ObjectiveOur study aimed to construct the circRNA-miRNA-mRNA regulatory network and analyze the function and prognostic significance of the network using bioinformatics tools.MethodsWe first downloaded the GC expression profile from the Gene Expression Omnibus database and identified differentially expressed genes and differentially expressed circRNAs. Then, we predicted the miRNA-mRNA interaction pairs and constructed the circRNA-miRNA-mRNA regulatory network. Next, we established a protein-protein interaction network and analyzed the function of these networks. Finally, we primarily validated our results by comparison with The Cancer Genome Atlas cohort and by performing qRT-PCR.ResultsWe screened the top 15 hub genes and 3 core modules. Functional analysis showed that in the upregulated circRNA network, 15 hub genes were correlated with extracellular matrix organization and interaction. The function of downregulated circRNAs converged on physiological functions, such as protein processing, energy metabolism and gastric acid secretion. We ascertained 3 prognostic and immune infiltration-related genes, COL12A1, COL5A2, and THBS1, and built a nomogram for clinical application. We validated the expression level and diagnostic performance of key prognostic differentially expressed genes.ConclusionsIn conclusion, we constructed two circRNA-miRNA-mRNA regulatory networks and identified 3 prognostic and screening biomarkers, COL12A1, COL5A2, and THBS1. The ceRNA network and these genes could play important roles in GC development, diagnosis and prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.