Abstract
Background: Hepatocellular carcinoma (HCC) remains notorious for its high malignancy, poor prognosis and high mortality. The exploration of novel therapeutic agents for HCC has remained challenging due to its complex aetiology. Therefore, it is necessary to elucidate the pathogenesis and mechanism of HCC for clinical intervention. Methods: We collected data from several public data portals and systematically analysed the association between transcription factors (TFs), eRNA-associated enhancers and downstream targets. We next filtered the prognostic genes and established a novel prognosis-related nomogram model. Moreover, we explored the potential mechanisms of the identified prognostic genes. The expression level was validated by several ways. Results: We first constructed a significant TF-enhancer-target regulatory network and identified DAPK1 as a coregulatory differentially expressed prognosis-related gene. We combined common clinicopathological factors and built a prognostic nomogram model for HCC. We found that our regulatory network was correlated with the processes of synthesizing various substances. Moreover, we explored the role of DAPK1 in HCC and found that it was associated with immune cell infiltration and DNA methylation. Several immunostimulators and targeting drugs could be promising immune therapy targets. The tumor immune microenvironment was analyzed. Finally, the lower DAPK1 expression in HCC was validated via the GEO database, UALCAN cohort, and qRT-PCR. Conclusion: In conclusion, we established a significant TF-enhancer-target regulatory network and identified downregulated DAPK1 as an important prognostic and diagnostic gene in HCC. Its potential biological functions and mechanisms were annotated using bioinformatics tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.