Abstract
The mitochondrial enzyme N-acetylglutamate synthase (NAGS) produces N-acetylglutamate serving as an allosteric activator of carbamylphosphate synthetase 1, the first enzyme of the urea cycle. Autosomal recessively inherited NAGS deficiency (NAGSD) leads to severe neonatal or late-onset hyperammonemia. To date few patients have been described and the gene involved was described only recently. In this study, another three families affected by NAGSD were analyzed for NAGS gene mutations resulting in the identification of three novel missense mutations (C200R [c.598T > C], S410P [c.1228T > C], A518T [c.1552G > A]). In order to investigate the effects of these three and two additional previously published missense mutations on enzyme activity, the mutated proteins were overexpressed in a bacterial expression system using the NAGS deficient E. coli strain NK5992. All mutated proteins showed a severe decrease in enzyme activity providing evidence for the disease-causing nature of the mutations. In addition, we expressed the full-length NAGS wild type protein including the mitochondrial leading sequence, the mature protein as well as a highly conserved core protein. NAGS activity was detected in all three recombinant proteins but varied regarding activity levels and response to stimulation by l-arginine. In conclusion, overexpression of wild type and mutated NAGS proteins in E. coli provides a suitable tool for functional analysis of NAGS deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.