Abstract

Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome characterized by erythroid aplasia, physical malformation, and cancer predisposition. Twenty ribosomal protein genes and three non-ribosomal protein genes have been identified associated with DBA. To investigate the presence of novel mutations and gain a deeper understanding of the molecular mechanisms of disease, targeted next-generation sequencing was performed in 12 patients with clinically suspected DBA. Literatures were retrieved with complete clinical information published in English by November 2022. The clinical features, treatment, and RPS10/RPS26 mutations were analyzed. Among the 12 patients, 11 mutations were identified and 5 of them were novel (RPS19, p.W52S; RPS10, p.P106Qfs*11; RPS26, p.R28*; RPL5, p.R35*; RPL11, p.T44Lfs*40). Including 2 patients in this study, 13 patients with RPS10 mutations and 38 patients with RPS26 mutations were reported from 4 and 6 countries, respectively. The incidences of physical malformation in patients with RPS10 and RPS26 mutations (22% and 36%, respectively) were lower than the overall incidence in DBA patients (~50%). Patients with RPS26 mutations had a worse response rate of steroid therapy than RPS10 (47% vs. 87.5%), but preferred RBC transfusions (67% vs. 44%, p = 0.0253). Our findings add to the DBA pathogenic variant database and demonstrate the clinical presentations of the DBA patients with RPS10/RPS26 mutations. It shows that next-generation sequencing is a powerful tool for the diagnosis of genetic diseases such as DBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call