Abstract

BackgroundIonotropic glutamate receptors (iGluAs, IUPHAR nomenclature) are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson’s and Alzheimer’s diseases. The known iGluA modulators, cyclothiazide (CTZ), IDRA-21, and other benzothiadiazide derivatives (ALTZ, HCTZ, and CLTZ) bind to the ligand-binding domain of flip-form of iGluA2 at the dimer interface, thereby increasing steady-state activation by reducing desensitization.MethodsTo discover new modulator compounds, we performed virtual screening for the ligand binding domain (LBD) of iGluA2 against NCI Diversity Set III library containing 1597 compounds, and subsequently performed binding-energy analysis for selected compounds. The crystal structure of rat iGluA2 S1S2J (PDB ID: 3IJO) was used for docking studies.Results and conclusionFrom this study, we obtained four compounds: (1) 10-2(methoxyethyl)-3-phenylbenzo[g]pteridine-2,4-dione, (2) 2-benzo[e]benzotriazol-2-yl-aniline, (3) 9-nitro-6H-indolo-(2,3,-b)quinoxaline, and (4) 1-hydroxy-n-(3-nitrophenyl)-2-napthamide. The binding mode of these four compounds is very similar to that of abovementioned established modulators: two molecules of each compound independently bind to the protein symmetrically at the dimer interface; occupy the subsites B, C, B’ and C’; potentially interact with Ser518 and Ser775. Binding energy analysis shows that all the four hits are comparable to the drug molecule, CTZ, and hence, we propose that the discovered hits may be potential molecules to develop new chemical libraries for modulating the flip form of iGluA2 function.

Highlights

  • IntroductionIonotropic glutamate receptors (iGluAs, IUPHAR nomenclature) are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson’s and Alzheimer’s diseases

  • Ionotropic glutamate receptors are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson’s and Alzheimer’s diseases

  • Discovering modulators to regulate the function of AMPA receptors may provide numerous therapeutic avenues in the field of CNS drug discovery

Read more

Summary

Introduction

Ionotropic glutamate receptors (iGluAs, IUPHAR nomenclature) are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson’s and Alzheimer’s diseases. Ionotropic glutamate receptors (iGluAs) are a family of ligand-gated ion channels that are primarily localized to chemical synapses. They mediate fast excitatory neurotransmission in the mammalian central nervous system (CNS) [1,2] and references therein. IGluAs are critical for normal operations of cellular and synaptic activity and plasticity Dysregulation of these ion channels is frequently linked to the pathogenesis of a wide range of neurological disorder. Dysregulation of AMPA receptors leads to various chronic neuronal diseases such as depression, epilepsy, multiple sclerosis, Parkinson’s and Alzheimer’s diseases [3]. Positive allosteric modulators improve short-term memory in humans by slowing-down the deactivation of AMPA receptors [7], and these kinds of modulators may be beneficial for the treatment of depression and other disorders and diseases of CNS [3,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.