Abstract

Human granulocytic anaplasmosis (HGA), an increasingly recognized febrile tick-borne illness, is caused by a gram-negative obligate intracellular bacterium Anaplasma phagocytophilum. Because of nonspecific clinical manifestations, diagnosis of HGA highly depends on laboratory tests. Identification of immunoreactive proteins is prerequisite for development of specific and sensitive immunoassays for HGA. In this study, we identified novel immunoreactive proteins of A. phagocytophilum. Previous studies indicated that secreted proteins of A. phagocytophilum and other bacteria can be immunoreactive antigens. Here we in silico screened A. phagocytophilum genome for encoding proteins which bear features of type IV secretion system substrates. Among seventy seven predicted proteins, fourteen proteins were determined for antigenicity and nine proteins were showed to be immunoreactive antigens. In addition, an APH1384 peptide harboring a B cell epitope predicted by bioinformatics was found specifically reacting with anti-A. phagocytophilum sera. Hereby, we identified novel immunoreactive proteins and delineated a specific epitope of A. phagocytophilum, which might be employed for HGA diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.