Abstract

Development of immunomodulatory agents that enhance innate immune responses represents a promising strategy for combating infectious diseases. In the present studies, we screened a series of 71 arylcarboxylic acid hydrazide derivatives for their ability to induce macrophage tumor necrosis factor alpha (TNF-alpha) production and identified six such compounds, including one compound previously shown to be a formyl peptide receptor (FPR/FPRL1) agonist. The two most potent compounds [compound 1, nicotinic acid [5-(3-bromophenyl)-2-furyl]methylene-hydrazide; compound 2, 4-fluoro-benzoic acid [5-(3-trifluoromethyl-phenyl)-2-furyl]-methylene-hydrazide] were selected for further analysis. These compounds induced de novo production of TNF-alpha in a dose- and time-dependent manner in human and murine monocyte/macrophage cell lines and in primary macrophages. These compounds also induced mobilization of intracellular Ca(2+), production of reactive oxygen species, and chemotaxis in human and murine phagocytes. Induction of macrophage TNF-alpha production was pertussis toxin-sensitive, and analysis of the cellular target of these compounds showed that they were FPRL1-specific agonists and that this response was blocked by FPR/FPRL1 and FPRL1-specific antagonists. In addition, pharmacophore modeling showed a high degree of similarity for low-energy conformations of these two compounds to the current pharmacophore model for FPR ligands ( Mol Pharmacol 68: 1301-1310, 2005 ). Overall, these compounds represent novel FPRL1 agonists that induce TNF-alpha, a response distinct from those induced by other known FPR and FPRL1 agonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.