Abstract

Endocrine resistance remains a significant problem in the clinical treatment of estrogen receptor α-positive (ERα+) breast cancer (BC). In this study, we developed a series of novel dual-functional ERα degraders based on a bridged bicyclic scaffold with selenocyano (SeCN) side chains. These compounds displayed potent ERα degradation and tubulin depolymerization activity. Among them, compounds 35s and 35t exhibited the most promising antiproliferative and ERα degradation activity in multiple ERα+ BC cell lines bearing either wild-type or mutant ERα. Meanwhile, compounds 35s and 35t disrupted the microtubule network by restraining tubulin polymerization, evidenced by 35t inducing cell cycle arrest in the G2/M phase. In MCF-7 and LCC2 xenograft models, compounds 35s and 35t remarkably suppressed tumor growth without noticeable poisonousness. Finally, this study provided guidance for developing new dual-target antitumor drug candidates for the ERα+ BC therapy, especially for the resistant variant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.