Abstract

Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity - inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis.

Highlights

  • Chikungunya virus (CHIKV) is a mosquito-borne pathogen belonging to the Semliki Forest antigenic complex of the genus Alphavirus, family Togaviridae [1]

  • A unique feature shared by CHIKV with other members of the family Togaviridae is the translation of the structural polyprotein from the 26S mRNA, which is internally transcribed from the negative strand template through the initiation of the 26S

  • Recent outbreaks and expanding global distribution of Chikungunya virus (CHIKV) in different regions of Asia, Africa and Europe necessitates the development of effective therapeutic interventions

Read more

Summary

Introduction

Chikungunya virus (CHIKV) is a mosquito-borne pathogen belonging to the Semliki Forest antigenic complex of the genus Alphavirus, family Togaviridae [1]. A unique feature shared by CHIKV with other members of the family Togaviridae is the translation of the structural polyprotein from the 26S mRNA, which is internally transcribed from the negative strand template through the initiation of the 26S subgenomic promoter, located at the junction region between the non-structural and structural ORFs. Based on the genomic organization of other related alphaviruses, the CHIKV genome is considered to be: 59-nsP1-nsP2-nsP3-nsP4-junction region-C-E3E2-6k-E1-poly(A)-39 [3]. CHIKV virions have a spherical capsid with icosahedral symmetry surrounded by a lipid bilayer envelope (about 70 nm in diameter) derived from the host cell membrane during virus budding. CHIKV is transmitted between human hosts by blood-feeding female mosquitoes of the Aedes species, Ae. aegypti and Ae. albopictus, often resulting in a clinical condition

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.