Abstract

A 3D structure-based pharmacophore model built for bromodomain-containing protein 4 (BRD4) is reported here, specifically developed for investigating and identifying the key structural features of the (+)-JQ1 known inhibitor within the BRD4 binding site. Using this pharmacophore model, 273 synthesized and purchased compounds previously considered for other targets but yielding poor results were screened in a drug repositioning campaign. Subsequently, only six compounds showed potential as BRD4 binders and were subjected to further biophysical and biochemical assays. Compounds 2, 5, and 6 showed high affinity for BRD4, with IC50 values of 0.60 ± 0.25 µM, 3.46 ± 1.22 µM, and 4.66 ± 0.52 µM, respectively. Additionally, these compounds were tested against two other bromodomains, BRD3 and BRD9, and two of them showed high selectivity for BRD4. The reported 3D structure-based pharmacophore model proves to be a straightforward and useful tool for selecting novel BRD4 ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.