Abstract

Single-use systems in biopharmaceutical manufacturing can potentially release chemical constituents (leachables) into drug products. Prior to conducting toxicological risk assessments, it is crucial to establish the qualitative and quantitative methods for these leachables. In this study, we conducted a comprehensive screening and structure elucidation of 23 leachables (nonvolatile organic compounds, NVOCs) in two antibody drugs using multiple (self-built and public) databases and mass spectral simulation. We identified 7 compounds that have not been previously reported in medical or medicinal extractables and leachables. The confidence levels for identified compounds were classified based on analytical standards, literature references, and fragment assignments. Most of the identified leachables were found to be plasticizers, antioxidants, slip agents or polymer degradants. Polysorbate (namely Tween) is commonly used as an excipient for protein stabilization in biopharmaceutical formulations, but its ionization in liquid chromatography-electrospray ionization mass spectrometry can interfere with compound quantification. To address this, we employed a complexation-precipitation extraction method to reduce polysorbate content and quantify the analytes. The developed quantitative method for target NVOCs demonstrated high sensitivity (limit of quantification: 20 or 50 μg/L), accuracy (recoveries: 77.2 to 109.5 %) and precision (RSD ≤ 8.2 %). Overall, this established method will facilitate the evaluation of NVOC safety in drug products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.