Abstract
Identification of nonlinear systems by fuzzy models has been successfully applied in many applications. Fuzzy models are capable of approximating any real continuous function to a chosen accuracy. An algorithm for real-time identification of nonlinear systems using Takagi–Sugeno's fuzzy models is presented in this paper. A Takagi–Sugeno fuzzy system is trained incrementally each time step and is used to predict one-step ahead system output. Ability of the proposed identifier to capture the nonlinear behavior of a synchronous machine is illustrated. Effectiveness of the proposed identification technique is demonstrated by simulation and experimental studies on a power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.