Abstract
Non-Fermi liquid physics is ubiquitous in strongly correlated metals, manifesting itself in anomalous transport properties, such as a T-linear resistivity in experiments. However, its theoretical understanding in terms of microscopic models is lacking, despite decades of conceptual work and attempted numerical simulations. Here we demonstrate that a combination of sign-problem-free quantum MonteCarlo sampling and quantum loop topography, a physics-inspired machine-learning approach, can map out the emergence of non-Fermi liquid physics in the vicinity of a quantum critical point (QCP) with little prior knowledge. Using only three parameter points for training the underlying neural network, we are able to robustly identify a stable non-Fermi liquid regime tracing the fans of metallic QCPs at the onset of both spin-density wave and nematic order. In particular, we establish for the first time that a spin-density wave QCP commands a wide fan of non-Fermi liquid region that funnels into the quantum critical point. Our study thereby provides an important proof-of-principle example that new physics can be detected via unbiased machine-learning approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.