Abstract
Proteins that contain the recently described MIF4G and/or MA3 domains function in translation, cell growth, proliferation, transformation, and apoptosis. Examples of MIF4G/MA3 containing proteins and their functions include eIF4G, which serves as a scaffold for assembly of factors required for translation initiation, programmed cell death protein 4 (Pdcd4) that inhibits translation and functions as a tumor suppressor, and NMD2, which is essential for nonsense-mediated mRNA decay. MIF4G and MA3 domains serve as binding sites for one or more isoforms of the eIF4A family of ATP-dependent DEAD-box RNA helicases that are required for translation and for nonsense-mediated decay. In this report, we describe the characterization of a novel MIF4G/MA3 family member called NOM1 ( nucle olar protein with MIF4G domain 1) that was identified at the chromosome 7q36 breakpoint involved in 7;12 translocations associated with certain acute leukemias of childhood. NOM1, which includes a previously described EST called c7orf3, encodes a ubiquitously expressed transcript composed of 11 exons and an approximately 3 kb 3′ UTR that contains several Alu repeats. The predicted NOM1 protein contains one MIF4G domain and one MA3 domain and, consistent with data obtained with other MIF4G/MA3 proteins, interacts with members of the eIF4A family of helicases. Database searches reveal that NOM1 homologs exist in several organisms and that at least two of these are essential genes. Finally, like its Saccharomyces cerevisiae homolog Sgd1p, NOM1 localizes predominantly to the nucleolus. These data demonstrate that NOM1 is a new member of the MIF4G/MA3 family of proteins and suggest that it may provide an essential function in metazoans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.