Abstract

Recent progress in the development of small molecular skeleton-derived polo-like kinase (PLK1) catalytic domain (KD) inhibitors has led to the synthesis of multiple ligands with high binding affinity. However, few systematic analyses have been conducted to identify key PLK1-PBD domain and characterize their interactions with potent PLK1 inhibitors. Therefore, we designed a series of PLK1-PBD inhibitors with an in silico scaffold modification strategy. A docking simulation combined with a primary screen in vitro were performed to filter for the lead compound, which was then substituted, synthesized and evaluated by a variety of bioassays. The biological profile of 4v suggests that this compound may be developed as a potential anticancer agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.