Abstract

New data from the Herschel Space Observatory are broadening our understanding of the physics and evolution of the outer regions of protoplanetary disks in star forming regions. In particular they prove to be useful to identify transitional disk candidates. The goals of this work are to complement the detections of disks and the identification of transitional disk candidates in the Lupus clouds with data from the Herschel Gould Belt Survey. We extracted photometry at 70, 100, 160, 250, 350 and 500 $\mu$m of all spectroscopically confirmed Class II members previously identified in the Lupus regions and analyzed their updated spectral energy distributions. We have detected 34 young disks in Lupus in at least one Herschel band, from an initial sample of 123 known members in the observed fields. Using the criteria defined in Ribas et al. (2013) we have identified five transitional disk candidates in the region. Three of them are new to the literature. Their PACS-70 $\mu$m fluxes are systematically higher than those of normal T Tauri stars in the same associations, as already found in T Cha and in the transitional disks in the Chamaeleon molecular cloud. Herschel efficiently complements mid-infrared surveys for identifying transitional disk candidates and confirms that these objects seem to have substantially different outer disks than the T Tauri stars in the same molecular clouds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.