Abstract

In the past two decades, great progress has been made in our knowledge of how cells secrete. This progress has been possible primarily due to discovery of the ‘porosome’, the universal secretory portals at the plasma membrane in cells. Porosomes are permanent cup-shaped lipoprotein structures at the cell plasma membrane, where membrane-bounded secretory vesicles temporarily dock and fuse to expel all or part of their contents during cellular secretion. Porosomes have been found in neurons, in neuroendocrine cells, as well as in the exocrine pancreas. Furthermore, porosomes have been isolated, functionally reconstituted, and their composition determined. Although, the neuronal porosome has been exhaustively investigated, the detailed morphology of porosomes in the exocrine pancreas in situ remains to be further explored. The current study was carried out to determine the detailed morphology of the porosome in rat exocrine pancreas using high-resolution electron microscopy. Results from our study, demonstrate for the first time the presence of tethers or cables (which could be t-SNAREs) associated at the base of porosomes. Furthermore, for the first time our studies demonstrate the docking of a single secretory vesicle at the base of more than one porosome complex. Detailed spoke-like elements lining the porosome cup are also demonstrated for the first time in our study, providing a better understanding of the molecular architecture and physiology of this important cellular organelle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call