Abstract
The signal transducer and activator of transcription 3 is a constitutively activated oncogenic protein in various human tumors and represents a valid target for anticancer drug design. In this study, we have achieved a new type of STAT3 inhibitors based on structural modifications on shikonin scaffold, guided by computational modelling. By tests, PMMB-187 exhibited a more outstanding profile than shikonin on a small panel of human breast cancer cells, especially for the MDA-MB-231 cells. For the cellular mechanisms research, PMMB-187 was found to induce cell apoptosis in MDA-MB-231 cells, associated with the reduction of mitochondrial membrane potential, production of ROS and alteration of the levels of apoptosis-related proteins. Furthermore, PMMB-187 inhibited constitutive/inducible STAT3 activation, transcriptional activity, nuclear translocation and downstream target genes expression in STAT3-dependent breast cancer cells MDA-MB-231. Besides, no obvious inhibitory effect on activation of STAT1 and STAT5 was observed with PMMB-187 treatment. Most notably, the in vivo studies further revealed that PMMB-187 could dramatically suppress the MDA-MB-231 cells xenografted tumor growth. The in vitro and in vivo results collectively suggest that PMMB-187 may serve as a promising lead compound for the further development of potential therapeutic anti-neoplastic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.