Abstract

Human epidermal growth factor receptor 2 (HER2) is overexpressed in nearly 20–30% of breast cancers and is associated with metastasis resulting in poor patient survival and high recurrence. The dual EGFR/HER2 kinase inhibitor lapatinib has shown promising clinical results, but its limitations have also led to the resistance and activation of tumor survival pathways. Following our previous investigation of quinones as HER2 kinase inhibitors, we synthesized several naphthoquinone derivatives that significantly inhibited breast tumor cells expressing HER2 and trastuzumab-resistant HER2 oncogenic isoform, HER2Δ16. Two of these compounds were shown to be more effective than lapatinib at the inhibition of HER2 autophosphorylation of Y1248. Compounds 7 (5,8-dihydroxy-2-methylnaphthalene-1,4-dione) and 9 (2-(bromomethyl)-5,8-dihydroxynaphthalene-1,4-dione) inhibited HER2-expressing MCF-7 cells (IC50 0.29 and 1.76 μM, respectively) and HER2Δ16-expressing MCF-7 cells (IC50 0.51 and 1.76 μM, respectively). Compound 7 was also shown to promote cell death in multiple refractory breast cancer cell lines with IC50 values ranging from 0.12 to 2.92 μM. These compounds can function as lead compounds for the design of a new series of nonquinonoid structural compounds that can maintain a similar inhibition profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.